Analisis Klasifikasi Citra Penokohan Topeng Bali Menggunakan Model EfficientnetV2 Dan Xception
Abstract
Abstract— Bali is one of the provinces with quite complex cultural diversity in Indonesia. One of them is the characterization of traditional masks. Traditional masks in Balinese tradition are not only intended as performance accessories, but also as symbols of characterization, social status in indigenous communities, rites, and certain primordial activities. Every detail in the curve of the carving on the Balinese mask indicates an aesthetic richness that is certainly measurable as an ontological entity. In this case, the magnitude of this aesthetic measurability can be assisted by using various computational methods. This study tries to create a machine learning model with supervised learning to create a classification system for Balinese mask characterization. The methods used include: processing mask images into a 3-dimensional vector, each representing the red, green and blue color indices. Then each vector will go through a training process to create a measurability model for each characterization. The models used are EfficientNetV2 and Xception which are developments of convolutional models. The performance measurement metrics used are Accuracy, Precision, Recall & F1-Score. The Xception model produced an accuracy of 97%, while the EfficientNetV2 model produced an accuracy of 99%.
Keywords— Bali, Classification, EfficientNetV2, Mask, Xception
Copyright (c) 2024 Widya Yuniari
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright :
Authors who publish their manuscripts in this Journal agree to the following conditions:
The copyright for any article in the Jurnal Bangkit Indonesia by LPPM STT Indonesia Tanjung Pinang is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
The author acknowledges that Jurnal Bangkit Indonesia has the right to publish for the first time with a Licence Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License / CC BY-NC-SA 4.0
Authors can enter writings separately, arrange non-exclusive distribution of manuscripts that have been published in this journal into other versions (eg sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published or the first time in the Jurnal Bangkit Indonesia
Licence :
Jurnal Bangkit Indonesia published under the terms of a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License / CC BY-NC-SA 4.0 This license permits anyone to to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must license the modified material under identical terms.